
Author: Alejandro Acosta
Coordination and Revision: Guillermo Cicileo, Carlos MArtínez
Edition: Communications Area
Department: Technology Area

August 2023

Load Balancing and Failover 
with an NGINX Server at the 
Edge and an IPv6-Only Web 
Server Farm



 

 

Introduction ................................................................................................................................................. 2 

Why use NGINX at the edge? ................................................................................................................... 2 

Topology ........................................................................................................................................................ 2 

NGINX load balancing methods ............................................................................................................. 3 

NGINX load balancing configuration requirements (proxy server -edge-) ........................... 3 

Configurations ............................................................................................................................................. 4 
Load balancer side configuration: ......................................................................................................................................... 4 
Server farm side configuration ............................................................................................................................................... 4 

Testing and monitoring ........................................................................................................................... 5 

NGINX configuration for failover and other options ..................................................................... 5 

Check configuration and restart the server to apply the changes ............................................ 6 

Conclusion .................................................................................................................................................... 6 

GitHub with the configuration files ..................................................................................................... 6 

References .................................................................................................................................................... 6 
 

 

  



 

Introduction 

 

This paper is the continuation of NGINX Reverse Proxy for an IPv6-Only Server Farm: 
Efficient Web Connectivity. In that document we showed how to configure an NGINX Reverse 
Proxy and, together with a server, we were able to provide dual-stack (IPv4 and IPv6) web 
access to an IPv6-only server farm. A very interesting way to save IPv4 addresses and obtain 
a number of additional benefits. 
 

In this article, we will explore how to implement load balancing capabilities using an 

NGINX server at the edge and a web server farm operating exclusively on IPv6. We will 

describe the benefits of this configuration and the steps necessary to achieve a robust and 

reliable architecture, as well as the different implementation methods. 

 

Why use NGINX at the edge? 

 

NGINX servers are known for their performance, scalability, and advanced load balancing 

capabilities. Placing an NGINX server at the edge of the network allows you to have a single 

point of entry for your web services, where you can efficiently manage and distribute traffic to 

your IPv6-only server farm. 

 

Topology 

 

 
 

 

  

https://www.lacnic.net/innovaportal/file/6684/1/lacnic-conectividad_web_eficiente.pdf
https://www.lacnic.net/innovaportal/file/6684/1/lacnic-conectividad_web_eficiente.pdf
https://www.lacnic.net/innovaportal/file/6684/1/lacnic-conectividad_web_eficiente.pdf


 

NGINX load balancing methods 

 

NGINX has several methods for load balancing, each of which is explained below. 

 

● IP Hash: This method uses an algorithm that takes the source and destination IP 

addresses of the client and server and generates a unique hash key. This allows 

session persistence. 

● Round Robin (default): This is the default load balancing method. It tells the load 

balancer to go back to the top of the list and repeat the process. 

● Least Connections (least_conn): This method uses a dynamic load balancing 

algorithm. It redistributes connections to the member of the pool with the least 

number of active connections when a new connection request is received. 

NGINX load balancing configuration 

requirements (proxy server -edge-) 

 

• Install NGINX on your edge server and make sure it is properly configured to work 

with both IPv4 and IPv6. Keep in mind that this server can listen on both IPv4 and 

IPv6, it will proxy the requests and forward them internally to the server farm via IPv6 

only. 

• Create an NGINX configuration file and define the upstream block with the IPv6 

addresses of your web servers.  

• Configure the load balancing algorithms (e.g., round-robin, least_conn, or ip_hash) to 

distribute requests among the web servers in the farm. 

• Linux server at the edge with NGINX installed and with an IPv4 address and an IPv6 

address. 

• Each of the web servers that are part of your farm must have a different IPv6 address 

configured, and these IP addresses must be reachable by the proxy server. 

 

 

  



 

Configurations 

Load balancer side configuration: 

 

#File: /etc/nginx/sites-enabled/example.com 

upstream backend {  #The upstream of the server farm is called upstream 

    server [2001:db8:123::101]; #server backend1 

    server [2001:db8:123::102]; #server backend2 

    server [2001:db8:123::103]; #server backend3 

} 

 

server {  #this is a known NGINX directive 

    listen 80; #port on which the web server listens 

    server_name example.com www.example.com;  #domain name 

 

    location / { 

        proxy_pass http://backend;   #note that backend is the name of the 

upstream 

    } 

} 

Server farm side configuration 

 

All backend servers in the farm have the same configuration. 

 

#/etc/nginx/sites-available/default 

server { 

 listen [::]:80 default_server; 

 root /var/www/html; 

 index index.html index.htm index.nginx-debian.html; 

 server_name _; 

 location / { 

  try_files $uri $uri/ =404; 

 } 

} 

 

 

  

http://www.example.com/
http://backend/


 

Testing and monitoring 

 

Once the configurations are complete, we can proceed with testing. Here is a list of tests 

that can potentially be performed: 

a) Create a different file on each server in the farm and load www.example.com from 

the Internet. Every time we load and reload the page, it should show a page for each 

server in the upstream directive. 

b) Check the nginx logs on each backend server, e.g., you could use tail -f 

/var/log/nginx/*.log and check all accesses and/or errors. 

c) Review the load balancer logs, you could also use tail -f /var/log/nginx/*.log 

d) You could run this very simple script to test the round robin: 

for ((i=1;i<=10;i++)); do   curl -v "http://www.example.com"; sleep 1; done 

 

NGINX configuration for failover and other 

options 

 

In NGINX, failover is handled by sending parameters to the specified upstream backend 

servers.  

The various parameters are as follows (see example below): 

 

weight: This option allows you to specify the relative weight of each server in the 

upstream group. As you have already used it in your example, the weight determines the 

proportion of requests that each server will handle compared to the others. 

 

max_fails: This option allows you to specify the maximum number of failed attempts to 

connect to a server before considering it temporarily unavailable. The default value is 1. For 

example, max_fails=3; specifies that a server will be marked as unavailable after three 

consecutive failed connection attempts. 

 

fail_timeout: This option defines the time that a server will be considered unavailable after 

reaching the maximum number of failed attempts specified by max_fails. The default value is 

10 seconds. For example, fail_timeout=30s; defines a 30 second timeout for a server 

marked as unavailable. 

 

backup: This option specifies that a server should be used as a reserve or backup. A 

server marked as backup will only be used if all other servers are marked as unavailable. 

 

down: This option marks a server as permanently unavailable. NGINX will not send 

requests to a server marked as “down” even if all other servers are marked as unavailable. 

For example, down; marks a server as unavailable. 

 

  

http://www.example.com/


 

upstream backend { 

    server [2001:db8:123::101] weight=3; 

    server [2001:db8:123::102] max_fails=2 fail_timeout=10s; 

    server [2001:db8:123::103] backup; 

    server [2001:db8:123::104] down; 

} 

Check configuration and restart the server to 

apply the changes 

 

# nginx -t 

# systemctl restart nginx 

Conclusion 

 

Implementing load balancing and failover using an NGINX server at the edge and an IPv6-

only web server farm results in a scalable and robust architecture. You can efficiently 

distribute incoming traffic between your web servers and ensure high availability for your 

services. 

GitHub with the configuration files 

 

https://github.com/LACNIC/BlogPostHelpFiles/tree/main/2023_07_Balanceo_Carga_y_Failo

ver_NGINX_IPv6 

 

References 

https://help.clouding.io/hc/es/articles/360019908839-C%C3%B3mo-configurar-un-servidor-

de-balanceo-de-carga-Nginx-en-Ubuntu-20-04 

https://cloud.google.com/load-balancing/docs/https 

https://stackoverflow.com/questions/69285690/nginx-load-balancer-configuration-not-

working 

 

 

https://github.com/LACNIC/BlogPostHelpFiles/tree/main/2023_07_Balanceo_Carga_y_Failover_NGINX_IPv6
https://github.com/LACNIC/BlogPostHelpFiles/tree/main/2023_07_Balanceo_Carga_y_Failover_NGINX_IPv6
https://help.clouding.io/hc/es/articles/360019908839-Cómo-configurar-un-servidor-de-balanceo-de-carga-Nginx-en-Ubuntu-20-04
https://help.clouding.io/hc/es/articles/360019908839-Cómo-configurar-un-servidor-de-balanceo-de-carga-Nginx-en-Ubuntu-20-04
https://cloud.google.com/load-balancing/docs/https
https://stackoverflow.com/questions/69285690/nginx-load-balancer-configuration-not-working
https://stackoverflow.com/questions/69285690/nginx-load-balancer-configuration-not-working

	Introduction
	Why use NGINX at the edge?
	Topology
	NGINX load balancing methods
	NGINX load balancing configuration requirements (proxy server -edge-)
	Configurations
	Load balancer side configuration:
	Server farm side configuration

	Testing and monitoring
	NGINX configuration for failover and other options
	Check configuration and restart the server to apply the changes
	Conclusion
	GitHub with the configuration files
	References

