Contents

• Agenda
 – 1. Transition strategies
 – 2. Types of transition mechanisms
 – 3. Introduction to translation
 – 4. Native IPv6
 – 5. Dual stack
 – 6. IPv6-only
 – 7. NAT64/DNS64
 – 8. 464XLAT
 – 9. SIIT-DC
Transition strategies (I)

• We are talking about transitioning to IPv6 and coexistence with IPv4

• Two goals:
 1. Achieve IPv6 connectivity
 2. Provide a solution the shortage of IPv4 addresses
Transition strategies (II)

• Three possible strategies (in order of preference):
 1. **Native IPv6**: Native IPv6 packet using the IPv6 header from origin to destination. Two options: **dual-stack** or **IPv6-only**.
 2. **Tunneling**: Encapsulating one version of the IP protocol in another.
 3. **Translation**: Necessary for communicating two hosts that “speak” only one (different) version of the IP protocol.

Hint: These strategies can be combined
Types of transition mechanisms (I)

- **IPv6 transition mechanisms (TM)**: Techniques used to allow IPv6 connectivity and, in some cases, to mitigate the shortage of IPv4 addresses.
- NAT44 and NAT444 (CGN) are not IPv6 TMs. They are mechanisms used to extend the life of public IPv4 addresses.
- We will talk about dual-stack and IPv6-only
- We will see examples of:
 1. Tunneling
 2. Translation
Types of transition mechanisms (II)

- **Tunnels**: To encapsulate one version of the IP protocol in another
- **Goal**: To traverse a network that does not support IPx
- Static vs. automatic tunnels
- Point-to-point vs. multipoint tunnels
- The most common transition mechanism
- There are many tunneling mechanisms, many of them deprecated or obsolete, others in the development or proposal stage

![IPv6, GRE, IPv4, UDP, IPv4, IPv6, IPv4, IPv6, IPv4, IPv6]
Types of transition mechanisms (III)

• When communication is necessary between an IPv6-only node and an IPv4-only node, in either direction:

1. IPv6-only \rightarrow IPv4-only

2. IPv4-only \rightarrow IPv6-only

OBSOLETE [RFC4966] (NAT-PT)
Native IPv6

- **Native IPv6:** IPv6 without encapsulation or translation. The IPv6 header is used from origin to destination.

- **Advantages:** Final solution. IPv6 operation is solid and stable, with no need for future changes. The move to IPv6 is completed in a single stage.

- Two options:
 1. **Dual-stack:** adding native IPv6 to IPv4
 2. **IPv6-only:** only native IPv6 on the network
Dual stack (I)

• Both IPv4 and IPv6 are available: the client chooses
• Advantage: Most IPv4-friendly option, allows a gradual transition to IPv6
• Default configuration places preference on IPv6 -> minor changes

 Native IPv6
 IPv6 with TM
 IPv4

 Native IPv6
 IPv4
 IPv6 with TM

• Coexistence with IPv4:
 – Data plane: from IPv4 to IPv6 ---> No problem
 – Control plane: both, IPv4 and IPv6 ---> More complex/expensive
Dual stack (II)

IPv4
IPv6

service.example.com

DUAL STACK
Dual stack
IPv4 IPv6

service.example.com

DNS

IPv4 IPv6
Dual stack (III)

- Solution: Happy Eyeballs [RFC8305] (subs RFC 6555)
IPv6-only

• Reasons:
 – Not enough public IPv4 addresses
 – Easier to manage, monitor and configure
 – New IPv6-only services (WSN - 6Lowpan)
 – IPv6-only server farms with dual-stack front end
 – Implementations are valid “forever”

• What happens with IPv4-only content/services/hosts/applications?
 – DS-Lite: allows offering IPv4 to end users (tunneling)
 – NAT64/DNS64, 464XLAT: translation, incomplete solution
 – As more IPv6 content becomes available, the problem will not be as serious
Introduction to tunneling

- **Tunnels**: Encapsulate one version of the IP protocol in another
- **Goal**: To traverse a network that does not support IPx
 - Static vs. automatic tunnels
 - Point-to-point vs. multipoint tunnels
 - Most common transition mechanism
 - There are many tunneling mechanisms, many of them deprecated or obsolete, others under development or in the proposal stage
Tunneling: 6in4

- **6in4:**
 - Encapsulates IPv6 (protocol 41) in IPv4
 - Static
 - Point-to-point
 - Manual
Tunneling: 6RD (I)

• Developed by “Free” a French ISP
 – Detailed in the rfc5569
 – Protocol specification rfc5969
• Developed in only 6 weeks
• Enables IPv6 connectivity for only-IPv4 networks
 – Must be supported by the client equipment (CPE)
• Depends on two components
 – **CPE 6rd**: interface between the operator and the user
 – **Relay 6rd**: interface between the IPv4 network and IPv6 network
Tunneling: 6RD (II)

- **Device characteristics**
 - **CPE**
 - XDSL modem, cable modem, 3G modem, etc.
 - Modified software to support 6rd
 - Remote management is recommended
 - **Relay 6rd**
 - Encapsulate/unencapsulate IPv4 <-> IPv6 packets
Tunneling: DS-Lite (I)

- DS-Lite:
 - Based on an IPv6 network: native IPv6 traffic
 - IPv4 traffic is encapsulated in IPv6 and sent to a “Big NAT”
 - Public IPv4 addresses are shared
 - Just one level of NAT
 - Name of the “Big NAT”: AFTR (Address Family Transition Router), CGN (Carrier Grade NAT) or LSN (Large Scale NAT)
 - “Client”: B4 (Basic Bridging BroadBand)
Tunneling: DS-Lite (II)

Dual-stack IPv6

End-users

src-IPv6 10.0.0.2

10.0.0.2 | 1.2.3.4

src-IPv6 | dst-IPv6

src-IPv4 | dst-IPv4

B4

IPv6

AFTR

1.1.1.1 IPv6

IPv4

NAT

src-IPv4 | dst-IPv4

1.1.1.1 | 1.2.3.4

1.2.3.4

dst-IPv6

src-IPv4 | dst-IPv4

src-IPv4 | dst-IPv4

B4-IPv6 | AFTR-IPv6

src-IPv4 | dst-IPv4
Introduction to translation (I)

• When an IPv6-only node must communicate with an IPv4-only node, in either direction:

1. IPv6-only → IPv4-only
2. IPv4-only → IPv6-only OBSOLETE [RFC4966] (NAT-PT)

• Remember: Use only if dual-stack or tunneling mechanisms are not possible.
Introduction to translation (II)

IPv4

Internet

Dual-stack

IPv6

IPv4

Translator

IPv6
Introduction to translation (III)
NAT64/DNS64 (I)

- NAT64 only translates unicast TCP, UDP, and ICMP
- Users share public IPv4 addresses
- Automatic address translation using static information
- Uses a known prefix (64:ff9b::/96 or others)
NAT64/DNS64 (II)

- IPv6-only nodes must believe that IPv4-only nodes are reachable via IPv6
- DNS64 creates false responses: automatically translates an IPv6 address based on the node’s IPv4 address

- NAT64/DNS64 are known as stateful NAT64 (v6 network -> v4 Internet)

 vs.

- Stateless NAT64 -> without DNS64
 1. IPv6 Internet to an IPv4 node
 2. 1 to 1 translation
Stateful NAT64/DNS64

IPv4 Internet Dual-stack

www.example.com A 192.0.1.3

IPv4

TCP SYN 192.0.1.3
TCP ACK SYN

IPv6

TCP ACK SYN
TCP SYN 64:ff9b::c00:103

www.example.com

AAA 64:ff9b::c00:103

NAT64

DNS64

192.0.2.3 -> 64:ff9b::c00:103

www.example.com ?

www.example.com

IPv6

DNS
NAT64/DNS64 (III)

• **NAT64/DNS64 has certain limitations/issues:**

 • Defined only for unicast TCP, UDP, and ICMP

 • Applications using layer 3 information in the FTP application layer [RFC6384], SIP/H323 -> require ALG

 • Need to add new “boxes”

 • **NAT64/DNS64 work well with DNS domain names. But what happens if an application tries to use an IP address? It doesn't work**

 • What happens with applications that don't support IPv6? They're out
464XLAT (I)

- NAT64/DNS64: Work with applications that support IPv6
- **What happens with an IPv4-only application running on an IPv6-only host?**
- **464XLAT**: stateful NAT64 (core) + stateless NAT64 (border)
- Only supports IPv4 in the client-server model, where the server has a global IPv4 address
- **CLAT**: customer-side translator
 - Algorithmically translates 1:1 private IPv4 addresses to global IPv6 addresses and vice versa
- **PLAT**: provider-side translator
 - Translates N:1 global IPv6 addresses to public IPv4 addresses and vice versa
464XLAT (II)

v6 : Global IPv6
v4p : Private IPv4
v4g : Global IPv4
PDP : Packet Data Protocol
GGSN : Gateway GPRS Support Node

UE / Mobile Phone

IPv6 PDP

CLAT

Mobile Core

PLAT

IPv4 PDP

IPv4

Internet

v6 : Global IPv6
v4p : Private IPv4
v4g : Global IPv4
GGSN : Gateway GPRS Support Node

<- v4p -> XLAT <- v6 -> XLAT <- v4g ->
SIIT-DC

WHAT is SIIT-DC?
- Stateless IP/ICMP Translation for IPv6 Data Center Environments

What does SIIT-DC resolves?
- Servers in a DC (also worth to mention devices, appliances, applications, hosts, etc.) IPv6 Only that requires connectivity to the IPv4 Only world (and viceversa).

Why SIIT-DC?
- Evolution of DC: IPv4-Only → Proxies → DS → IPv6 Only
SIIT-DC

D) SIIT-DC

Architecture
- Translation IPv4 to/from IPv6 and ICMPv4 t/f ICMPv6.
- SIIT-DC: RFC7755.
- Algorithm specified for translation IP/ICMP: RFC7915.
- Translation with EAMT.

Highlights
- Translation IP Header
- L4 payload is copied verbatim.
- ‘Stateless’.
- Based in EAM Tables (Explicit Address Mapping – RFC7757).

Cons:
- Only Unicast, no IPv4 Options, no EH for IPv6.

[Diagram of data center with IPv6 Only Network, XLAT: IP/ICMP Translator, and IPv4 Only Network]
D) SIIT-DC

SIIT with EAM (EAM: Explicit Address Mapping)

Example of translation

<table>
<thead>
<tr>
<th>Entry</th>
<th>IPv4 Prefix</th>
<th>IPv6 Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.9.1</td>
<td>2001:db8:aaaa::</td>
</tr>
<tr>
<td>2</td>
<td>192.168.77.5/32</td>
<td>2001:db8:bbbb::7/128</td>
</tr>
<tr>
<td>3</td>
<td>182.168.2.16/28</td>
<td>2001:db8:cccc::/124</td>
</tr>
<tr>
<td>4</td>
<td>192.0.2.192/29</td>
<td>2001:db8:dddd::/64</td>
</tr>
<tr>
<td>5</td>
<td>190.10.2.224/29</td>
<td>2001:db8:eeee:8::/62</td>
</tr>
<tr>
<td>6</td>
<td>172.77.2.16/28</td>
<td>64:ff9b::/124</td>
</tr>
</tbody>
</table>

SIIT-EAM example of translations

<table>
<thead>
<tr>
<th>IPv4/IPv6 a Traducir</th>
<th>IPv6/IPv4 Traducida</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.9.1</td>
<td>2001:db8:aaaa::</td>
</tr>
<tr>
<td>172.77.2.20</td>
<td>64:ff9b::4</td>
</tr>
<tr>
<td>2001:db8:eeee:9::</td>
<td>190.10.2.225</td>
</tr>
</tbody>
</table>

Translated IPv6 = EAM6 + (IPv4 to translate – EAM4)
Translated IPv4 = EAM4 + (IPv6 to translate – EAM6)
Questions?
Comment?

Alejandro Acosta
alejandro@lacnic.net
@ITandNetworking