Happy Eyeballs v2
RFC8305

LACNIC 32 / LACNOG 2019
October, 2019
Panamá

Jordi Palet
(jordi.palet@theipv6company.com)
Happy Eyeballs v1 (HEv1) - 1

- Transition is based in preferring IPv6

- RFC6555 (April 2012)
 - Happy Eyeballs: Success with Dual-Stack Hosts

- In dual-stack hosts if IPv6 fails apps in the client present delays, compared with IPv4, which can be so high that may ruin the user experience
 - Up to 21 seconds in every web object

- HE sorts it out
 - Querying for both A and AAAA
 - Sending TCP SYN to both (IPv4 & IPv6)
 - Using the faster one, unless difference is small, so still giving preference to IPv6
Happy Eyeballs v1 (HEv1) - 2

* All figures provided by HEv2 co-authors
 David Schinazi, Tommy Pauly
 Apple
Happy Eyeballs v2 (HEv2) - 1

- RFC8305
- Extends HEv1
- HEv2 is already in production since long time ago in many Apple devices
- Since some years, they did measurements before publishing the RFC
- It accelerates the users experience by “reordering” the address preference, while still trying to keep IPv6 on top
Happy Eyeballs v2 (HEv2) - 3

- Start DNS
- AAAA
- Start TCP
- IPv6 SYN
- Done
- A
Happy Eyeballs v2 (HEv2) - 4

- RFC6724 (Default Address Selection for IPv6) vs HEv2
HE good or bad?

• Happy Eyeballs is good for the users

• However, “hides” IPv6 failures, so is bad for operators if they don’t have appropriate ways to monitor their correct IPv6 deployment
 – Big content providers often block IPv6 (by hiding AAAA records) for operators with “bad” IPv6 quality
 – Consequently, IPv6 traffic will not grow in those networks, which is the main goal
 – Badly performed IPv6 deployments are counterproductive and may bring bad technical and business decisions
Common IPv6 Failures

- IPv6 deployment, is unfortunately, many times, done in a “broken” way because not “unlearning” IPv4, so it creates troubles which reduce the users perceived “QoS”

1. ICMPv6 filtering
 - Breaks PMTUD and the destination becomes non-reachable

2. IPv6 path doesn’t work or has higher delay
 - Fallback to IPv4
Reporting of HEv2 Failures

• draft-palet-ietf-v6ops-he-reporting

• This document describes a HE (v1 & v2) extension, to do an automated failure reporting when the client fall-back to IPv4

• ¿How?
 – KISS: Reusing existing and commonly available protocols
 – syslog, only UDP port 514 (RFC5424/26)
 • Very common in many networks
 • No need to ask the operators to install anything “new” or “different”
Automating the Reporting

- Syslog sorts-out the operator network side

- We also want “zero-config” in clients

- ¿How?
 - Reusing again …
 - This only makes sense if the ISP already has IPv6 to customers
 - The ISP uses a NSP (Network Specific Prefix)
 - HE discovers that prefix by means of RFC7050 (Discovery of the IPv6 Prefix Used for IPv6 Address Synthesis)
 - Add to it a well known and no longer used IPv4 (192.88.99.0/24, it was 6to4 anycast, deprecated by RFC7526)
 - So we have an IPv6 GUA (or /96 for HA) for clients to report to:
 - Network-Specific Prefix::192.88.99.1 (example 2001:db8::192.88.99.1)
HEv2 Conclusions

• HEv1/v2 DO NOT solve PMTUD failures
 – Operators need to avoid breaking ICMPv6

• If “draft-palet-ietf-v6ops-he-reporting” becomes an RFC, is NOT a “solution”, but
 – Having data for error allows sorting them out
 • In your network or tell to third parties
 – Monitoring your network it is will very important:
 • Same issues than IPv4, consider longer-term for IPv6
 – Traffic quality
 – Quantity
 – Stability
 – Prefix visibility
 – ...

• RIPE ATLAS can help to that
 – Also paid services available
Thanks!

Contact:

– Jordi Palet:
 jordi.palet@theipv6company.com