Learning to use RIPE NCC’s Tools for Network Operators

Tutorial

9 October 2019 - LACNIC32 / LACNOG 2019 - Panama
Before starting...

• Have you filled out the attendance form?
 - You're helping us a lot into getting to know our attendees!
Troubleshooting
How to find information on what happened

Monitoring
Create measurements to detect changes

Integration with your tools
Make use of the created measurements to generate alarms
Troubleshooting

Section 1
What happened?

Exercise 1
• You work in a NOC of a big company with:
 - ASN **4725**
 - Prefix: **202.33.0.0/16**

• On the **23/09/2019**, right after 8:30 AM there are 100 emails complaining about connectivity problems to your web site in the IP **202.33.14.5**

• The **DNS** admin checked that the service is **OK**
• The **Web** admin checked that the service is also **OK**
What can you do?

Go to https://stat.ripe.net and try to find out:

- Any change in the announcement of your prefix?
- Any other ASN announcing (part of) your addresses?
- Can you find information about the “attacker”?
Another AS hijacked part of my address space

Conclusions

- Different actions to be taken:
 1. Contact the AS announcing my addresses
 2. Announce same/more specifics too
 3. Move the service to another “safe” IP
 4. Create Monitoring measurements
What is RIPEstat?

One interface for Internet data and statistics

“One-stop shop”
RIPEstat

User

Web Interface

API

Data Repository

RIS
RIPE DB
Other RIRs
Active Measurements
Third parties
What data? What sources?

- RIPE Database
- Other RIR data
- BGP routing data (RIS)
- Active measurements (RIPE Atlas, DNSMON)
- Geolocation (third party)
- Blacklist data (third party)
- More…
RIS - Routing Information Service

- RIPE NCC collecting BGP information since 1999
 - Raw data: ris.ripe.net
- 20+ route collectors
 900+ peers

- RIS data visualised in:
 - RIPEstat
 - RIS Live (ris-live.ripe.net)
Why use RIPEstat?

- Historical Information
- Info about your/other’s network
- Easy to share
- Easy to embed
- Several interfaces: Web and API
Query Types

- IPv4 and IPv6 address/prefix
- ASN
- Hostname
- Country code
RIPEstat Interfaces

- Web interface
 https://stat.ripe.net

- RIPEstat widget API

- RIPEstat data API
Get the data behind the widget!

https://stdl.rat.net/data/allocation-history/data.json?resources=AS3333
Shareable results URL

- Immutable shareable URL for each result!
- URL includes:
 - **widget** + queried **resource**
 - for some widgets: **settings**, **zoom**, **time period**
Where’s the data from?
Freshness and timescale of the data

- Timestamp and time period
- Different widgets = different update frequency
- Adjustable usually
 - Limits: different maximum granularities
Widgets List

https://stat.ripe.net/widget/list

RIPEstat Widgets

This is a complete list of all the widgets that RIPEstat offers. Each of these widgets can be accessed using the links below.

When you view a widget you can also get code for embedding it in your own pages. The full procedure for embedding and configuring widgets is described in the Widget API Documentation.

![Widgets List Table](image)

<table>
<thead>
<tr>
<th>Title (show slug)</th>
<th>Example</th>
<th>Prefix</th>
<th>IP address</th>
<th>ASN</th>
<th>Hostname</th>
<th>Country code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abuse Contact Finder</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address Space Hierarchy</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address Space Usage</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation History</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Announced Prefixes</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Announced Prefixes (inrdb)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Announced Prefixes (Ursa)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS Overview</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS Path Length</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS Routing Consistency</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASN Neighbours</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASN Neighbours History</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BGPlay

• See how your network is routed
 - Announcements
 - Withdrawals
 - Path changes

• Shows routing history
 - Animated graphic
 - Highly interactive

https://stat.ripe.net/widget/bgplay
BGPlay

Control panel:
- Covered time period
- RRC selection

Interactive animated graph

Control timeline

BGP event, ASN or ASN path details

Detailed timeline with events
History of Prefixes Announced by ASN
Monitoring

Section 2
How to detect problems

Exercise 2
After the incident, you move the service to another IP: 202.33.33.53

You decide to use RIPE Atlas to monitor the service to detect problems:

- Check delays from 5-10 places in Japan (ping)
- Check paths from 5-10 places in Japan (traceroute)
You need...

- **RIPE NCC Access Account** (access.ripe.net)
 - Create one if you don’t have it yet

- **Credits**: Every measurement has a cost in credits
 - Why? Fairness and avoid overload
 - How to earn credits?
 - Hosting a probe / anchor, Being an RIPE NCC member (LIR), Being RIPE Atlas sponsor, Transfer, **Voucher**
LACNIC 32 / LACNOG 2019 voucher

• Go to RIPE Atlas (atlas.ripe.net)
 - Login using your RIPE access account
 - My Atlas (left menu)
 - Credits
 - Redeem voucher

The voucher! :-) LACNIC32PANAMA
Exercise

- Go to https://atlas.ripe.net
- Login with your access account
- “Measurements, Maps and Tools”
- “Measurements” -> Create a Measurement

New Measurements:

- Run for **5 days**, 5-10 probes in **Japan**, target **202.33.33.53**
 1. Create a ping measurement
 2. Create traceroute measurement
Conclusions

You have two measurements running towards your monitored service
RIPE Atlas Goals

- Internet wide measurement system
 - Internet infrastructure, not all applications
- Real time & historical info
- Outbound and inbound (active) measurements
- Collaborative effort
- Open and free
- IPv4 and IPv6 capable
RIPE Atlas Overview (1)
RIPE Atlas Overview (2)
RIPE Atlas is made of…

Probes

• 10200+

• Around the world
RIPE Atlas is made of...

Anchors

- 550+ (22 LAC)
- Around the world
RIPE Atlas is made of...

User interfaces: Web interface / API / CLI / Streaming
RIPE Atlas is made of...

Measurements

<table>
<thead>
<tr>
<th>Measurements currently running</th>
<th>Built-in</th>
<th>User-defined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total UDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNSMON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ping</td>
<td>41</td>
<td>6829</td>
</tr>
<tr>
<td>Traceroute</td>
<td>45</td>
<td>6156</td>
</tr>
<tr>
<td>DNS</td>
<td>158</td>
<td>6026</td>
</tr>
<tr>
<td>SSL/TLS Certificate</td>
<td>4</td>
<td>374</td>
</tr>
<tr>
<td>NTP</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>HTTP</td>
<td>4</td>
<td>2201</td>
</tr>
<tr>
<td>WiFi</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

41
RIPE Atlas measurements

• **Built-in** global measurements towards root nameservers
 - Visualised as Internet traffic maps

• **Built-in** regional measurements towards “anchors”

• **Users** can run customised measurements
 - ping, traceroute, DNS, SSL/TLS, NTP and HTTP*

* Only towards anchors
Available visualisations: ping

- List of probes: sortable by RTT
- Map: colour-coded by RTT
- LatencyMON: compare multiple latency trends
Available visualisations: traceroute

- **TraceMON**: network topology, latency and nodes information

- **RIPE IPmap**: hops geolocation on map
Security Aspects

• Probes:
 - Hardware trust material (regular server address, keys)
 - No open ports; initiate connection; NAT is okay
 - Don’t listen to local traffic
 - No passive measurements
 - Automatic FW updates

• Measurements triggered by “command servers”
 - Inverse ssh tunnels

• Source code published
Ethical Considerations

• No passive measurements (no user traffic)
• Set of measurements is limited
• HTTP measurements only to Anchors
• All data is open and available to anyone
• Barrier to entry is low/cheap
• Open APIs
• Open source code on GitHub
Integration

Section 3
Preparing the lab

- Python, pip and the ripe-atlas CLI
- curl and jq commands
- How?
 - Native installations
 - Virtualbox
 - Docker
Command-line Interface (CLI) Toolset
RIPE Atlas CLI

• Open source
 - RIPE NCC led community contribution

• Documentation
 - https://ripe-atlas-tools.readthedocs.org/

• Source:
 - https://github.com/RIPE-NCC/ripe-atlas-tools/
Install RIPE Atlas tools

• Requirements for this section
 - ripe-atlas-tools running

 ripe-atlas command

• Native options
 - OSX
 sudo easy_install pip
 sudo pip install ripe-atlas-tools
 - Linux
 Available from many package repositories
 ...or same as in OSX
Install RIPE Atlas tools

- Windows native (experimental)
 - Windows 7
 - Windows 8 and up
Install RIPE Atlas tools

• Feel like trying Docker?

 - `docker build -t workshop-mnt github.com/aguiformoso/workshop-mnt`

 - `docker run -ti workshop-mnt bash`

 - Opens a shell into your container. Don't log out from it.

• Virtualbox installation?

 - user: `participante`

 - password: `participante`
Create API Key

- Go to MyAtlas
- Click on “Create an API Key”
- Choose “permission”: “schedule new measurement”
- Careful! Time is UTC!
- Give it a label
API key creation dialogue box

• My Atlas > Create an API Key
Configure RIPE Atlas CLI

• Create an API Key
 - https://atlas.ripe.net/keys/

• Configure your CLI
 - `ripe-atlas configure --editor`
 - `ripe-atlas configure --set authorisation.create=<MY_API_KEY>`
The --help flag

- Navigate through the available options

$ ripe-atlas --help

Usage: ripe-atlas <command> [arguments]

Commands:
- alias: Manage measurements' and probes' aliases
- configure: Adjust or initialize configuration options
- go: Visit the web page for a specific measurement
- measure: Create a measurement and wait for the results
- measurement-info: Return the meta data for one measurement
- measurement-search: Fetch and print measurements fulfilling specified criteria based on given filters
- probe-info: Return the meta data for one probe
The **--help** flag

- Get sub-command-specific information

```bash
$ ripe-atlas measure --help

Usage: ripe-atlas measure <type> [arguments]

Types:
  dns  
  http
  ntp
  ping
  sslcert
  traceroute

For extended options for a specific measurement type, try ripe-atlas measure <type> --help.
```
Fetch an existing measurement

• Fetch the measurement created previously

 - ripe-atlas report <MEASUREMENT_ID>

 - ripe-atlas report 1001
Search for probes

• Search for useful probes
 - ripe-atlas probe-search --asn 3333
 - ripe-atlas probe-search --country pa
 - ripe-atlas probe-search --country pa --status 1

• IPv6? Use the help menu

• Use probe tags!
 https://atlas.ripe.net/docs/probe-tags/
Search for probes

• Show specific fields

 - ripe-atlas probe-search --asn 3333 --field asn_v6 --field country --field description --field status

 - Check the --ids-only flag
Create a measurement

- **ripe-atlas measure ping**

 --target wikipedia.org

 --interval 60 (default one-off)

- **ripe-atlas measure traceroute**

 --target wikipedia.org

 --from-area

 --from-prefix

 --from-country

 --traceroute-show-asns
Better Reporting

- Your measurement might involve several world-wide distributed probes
 - Difficult to debug
 - Report on specific probes

 ripe-atlas report --probes 1,3 1001

 - Or group by country

 ripe-atlas report --aggregate-by country 1001

 - Bonus points: discover what measurement 1001 is by using the CLI only
Status Checks
Status Checks

• Documentation (Manual)
 - atlas.ripe.net/docs/api/v2/manual/measurements/status-checks.html

• Requirements for this section
 - curl command
 - jq command

```bash
curl <URL> | jq <filters>
```
Status Checks

• Metrics
 - Availability (packet loss)
 - Response time (latency)

• Status Check endpoint
 - atlas.ripe.net/api/v2/measurements/<MEASUREMENT_ID>/status-check
 - Use the <MEASUREMENT_ID> created previously
Status Checks

- Check the HTTP response headers
- This allows to HEAD the service

```
$ curl -v "https://atlas.ripe.net/api/v2/measurements/23018851/status-check"

HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Thu, 03 Oct 2019 07:32:19 GMT
Content-Type: application/json
Content-Length: 133
Connection: keep-alive
X-RIPE-Atlas-Global-Alert: 0
Allow: GET, HEAD, OPTIONS
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN
Strict-Transport-Security: max-age=15768000
```
Status Checks

• Checking the response body

curl "https://atlas.ripe.net/api/v2/measurements/23018851/status-check" | jq

```json
{
  "global_alert": false,
  "total_alerts": 0,
  "probes": {
    "6615": {
      "alert": false,
      "last": 0.245,
      "last_packet_loss": 0,
      "source": "Probes: 6615"
    }
  }
}
```
Status Checks: Your service

- <MEASUREMENT_ID>
 - atlas.ripe.net/api/v2/measurements/<MEASUREMENT_ID>/status-check

- Any connectivity loss?
- Any anomalies in RTT?
- Any alerts?
- Global alert?
Status Checks: Fine-tuning

- Alerts defaults need tuning?
 - lookback
 - median_rtt_threshold
 - max_packet_loss
 - permitted_total_alerts
Status Checks: Fine-tuning

- Alerts defaults need tuning?
 - lookback
 - median_rtt_threshold
 - max_packet_loss
 - permitted_total_alerts
Status Checks: Fine-tuning

- Alerts defaults need tuning?
 - **lookback**
 - **median_rtt_threshold**
 - **max_packet_loss**
 - **permitted_total_alerts**

`lookback=1`
Status Checks: Fine-tuning

- Alerts defaults need tuning?
 - lookback
 - median_rtt_threshold
 - max_packet_loss
 - permitted_total_alerts
Status Checks: Fine-tuning

- Alerts defaults need tuning?
 - **lookback**
 - **median_rtt_threshold**
 - **max_packet_loss**
 - **permitted_total_alerts**

lookback=5

128 ms
Status Checks: Fine-tuning

- Alerts defaults need tuning?
 - `lookback`
 - `median_rtt_threshold`
 - `max_packet_loss`
 - `permitted_total_alerts`

- `lookback=5`
- `128 ms`
- `median_rtt_threshold = 10%`
- Is the alert triggered?
Status Checks: URL parameters

- lookback
- median_rtt_threshold

atlas.ripe.net/api/v2/measurements/23018851/status-check
?lookback=10
&median_rtt_threshold=10%
Status Checks: URL parameters

- max_packet_loss
- permitted_total_alerts

- atlas.ripe.net/api/v2/measurements/23018851/status-check
 ?max_packet_loss=10
 & permitted_total_alerts=10
Status Checks integration

- `curl` and `jq` commands (and optionally `mail`)

```
curl "https://atlas.ripe.net/api/v2/measurements/22937039/status-check" |
jq 'select(.global_alert==true)' |

mail -s "My own Atlas integration" aformoso@ripe.net <<< "Something happened with measurement 22937039!"
```
Integration with Icinga

- Examples on GitHub
- Monitoring Integration example:

```python
define service {
  use generic-service
  host_name myhostname
  service_description Test_Atlas
  check_command check_http!-I atlas.ripe.net -r 'global_alert":false' --ssl=1 -u /api/v2/measurements/1040425/status-check/?permitted_total_alerts=1
}
```
Streaming API
RIPE Atlas Streaming API

• Receive measurement results as soon as they are sent by the probes
 - Publish + subscribe through web sockets

• There are three types of data:
 - Measurement results
 - Probe connection status events
 - Measurements metadata
Streaming from the CLI

- `ripe-atlas stream --help`

```
ripe-atlas stream --traceroute-show-asns 5001
```
RIPE Atlas Streaming API

• Powerful visualisations
 - DNS root instances

• Filtering and reusing measurement results

• Documentation:
 - https://atlas.ripe.net/docs/result-streaming/
RIPE Atlas Streaming API

• Requirements for this section
 - Web browser with Developer Console
 - In Safari
 Safari > Preferences > Advanced > Show Develop menu in menu bar

• Chrome or Firefox needs no reconfiguration
Steps

1. http://atlas.ripe.net/webinar/streaming01.html
2. Open the development console
3. Wait for results to arrive
4. Save the HTML file locally and edit the code
5. Open the edited html file in a browser and view results
Editing the HTML code

```javascript
// Subscribe to results coming from
// all the probes involved in the measurement 19230504
socket.emit("atlas_subscribe",
    {
        stream_type: "result",

        type: "ping",

        greaterThan: {
            // out of 3 packets (or more),
            // choose the minimum (min)
            min: 100
        }

        destinationPrefix: "193/8",
        passThroughPrefix: "193/8" // only for traceroute
    }
);
```
EX1: Monitoring server reachability

- Back to our initial problem
- Are your pings still running?
- Edit streaming01.html
 - Use the *msm* parameter
 - Choose acceptable latency threshold, through the *greaterThan* parameter on *min* value
 - Notice and react when you start receiving samples
EX2: Monitoring server reachability

- Same as previous exercise, but you didn’t schedule a measurement in advance
 - You don’t have a measurement ID
- You want to get all the measurements reaching 167.250.112.0/24
- You can filter by \texttt{type: "http"}
 - Bonus point for hosting an Anchor!

\texttt{destinationPrefix: '167.250.112.0/24'}
Wrapping up

- Command Line Interface
 - Search for probes
 - Create measurements! (*stop those you don't need any longer*)
 - Use filters!

- Status Checks
 - Fine-tune your service monitors
 - Custom integrations through a simple URL

- Streaming API
 - From the CLI
 - From the browser
I'M HELPING BUILD THE WORLD'S LARGEST INTERNET MEASUREMENT NETWORK
RIPE Atlas community

- Users
- Hosts
 - Probes
 - Anchors
- Sponsors
- Ambassadors
- Developers
- Network operators
- Researchers
What RIPE Atlas users say (part 1)

• Visualisation of a New Node in LACTLD Anycast Service (Hugo Salgado):
 - https://labs.ripe.net/Members/hugo_salgado/visualisation-of-a-new-node-in-lactld-anycast-service
What RIPE Atlas users say (part 2)

- Using RIPEstat to Analyse Cable Cuts in Chile:
Hosting a probe

• Create a RIPE NCC Access account
• Go to https://atlas.ripe.net/apply
• Get a probe from a RIPE Atlas ambassador at a conference
• Available soon the software probes:
 - More news during RIPE 79 Meeting in Rotterdam
Probes in LAC

- 282 connected probes (total worldwide is 10,000+)
- Connect your abandoned probe!
 - https://atlas.ripe.net/docs/troubleshoot-probe-issues/
Hosting an Anchor

- Measurement targets that function as powerful RIPE Atlas probes
- Regional baseline
- RIPE NCC Anchoring measurements: ping, traceroute, HTTP
- +500 probes targeting each anchor
- 10x more credits than a probe
Anchors in LAC

- 22 anchors (5 are VMs) thanks to:
 - Hosting organisations
 - Sponsoring from LACNIC
Apply Now!

• We need more anchors in LAC; more coverage, better results!

• Now also VM anchors available

• What is required to host an anchor:
 - https://atlas.ripe.net/get-involved/become-an-anchor-host/

• Apply!
 - https://atlas.ripe.net/anchors/apply/
New: RIPE Labs Tools

- A list of prototype tools and visualisations we are currently working on
 - https://labs.ripe.net/playground
Contacting RIPE Atlas

- https://atlas.ripe.net
- Users mailing list: ripe-atlas@ripe.net
- Articles & updates on RIPE Labs: https://labs.ripe.net/atlas
- Questions and bugs: atlas@ripe.net
- Twitter: @RIPE_Atlas and #RIPEAtlas
References

- atlas.ripe.net
- RIPE Atlas en Latino America y Caribe
- Get involved
- About RIPE Atlas anchors
- VM anchors requirements and installation instructions
- VM anchors in production - RIPE Labs
The End!