Advances in IPv6 Network Reconnaissance

Fernando Gont

LACNIC 29 Ciudad de Panamá, Panama. Abril 30 - Mayo 4, 2018

Introduction

LACNIC 29 Panama City. April 30 - May 4, 2018

 $\ensuremath{\mathbb{C}}$ 2018 SI6 Networks. All rights reserved

Network Reconnaissance

reconnaissance

/rɪˈkɒnɪs(ə)ns/ 🐠

noun

military observation of a region to locate an enemy or ascertain strategic features.

"an excellent aircraft for low-level reconnaissance" synonyms: preliminary survey, survey, exploration, observation, investigation, examination, inspection, probe, scrutiny, scan; More

preliminary surveying or research.
"conducting client reconnaissance"

Network reconnaissance:

Locate possible targets and/or learn network information/features that can be leveraged for performing network-based attacks

Going mass scale

- What if we wanted to target the whole IPv6 Internet or a whole country?
- How do we find information about the "most popular" nodes?
- Some boring and dirty work needs to be done
 - What are the TLDs for a given region?
 - What are de suffixes for a given TLD?
 - etc

Going mass scale

- Some techniques need to be adapted or evaluated
 - e.g. dnsrevenum6 tend to fail on very short prefixes
- Other techniques need to be extrapolated
 - e.g. smarts on prefixes as opposed to addresses
- Where else to go and look for information?

Where to start?

LACNIC 29 Panama City. April 30 - May 4, 2018

© 2018 SI6 Networks. All rights reserved

Where to get to the most important bits?

- There were at least three datasets of popular sites:
 - Alexa's Top-1M Domains
 - Majestic's List
 - Umbrella list
- All available at: https://github.com/fgont/domain-list
- But far form the number of existing domain names...

Zone files for all

• Some TLDs zones (e.g. .ORG) shared via:

https://czds.icann.org/

• Some ccTLD zone made voluntarily available:

https://zonedata.iis.se/

• Some leaked:

https://github.com/mandatoryprogrammer/RussiaDNSLeak

Leveraging Search Engines

LACNIC 29 Panama City. April 30 - May 4, 2018

 $\ensuremath{\mathbb{C}}$ 2018 SI6 Networks. All rights reserved

Challenges

• Most search engines support this sort of query:

site: DOMAIN

- Some engines obfuscate the results
 - Google is a notable example
- Some will ban you if they assume you are a robot
 - Teoma will ban you for about a day
- Some require you to keep state (cookie-like)
 - Just scrap the first page for the "cookie", and use it in the actual query
- Some complain if they think you are a robot
 - Fake the user-agent
 - Fly low, if necessary

Playing with Teoma

- Good search results
- No obfuscation of results page
 - Improvements in scanning techniques
 - Improvements in IPv6 addressing to mitigate these attacks
- Banning upon lots of queries
 - Limits usefulness for a single target
- Example:

script6 get-teoma navy.mil

Playing with Bing

- Good search results
- No obfuscation of results page
 - Improvements in scanning techniques
 - Improvements in IPv6 addressing to mitigate these attacks
- No banning upon multiple queries
- Example:

script6 get-bing navy.mil

Playing with dictionaries

- Performance is much increased with the help of a dictionary
- Example:

script6 get-bing-dict navy.mil english.dic

Address patterns: Any changes?

Introduction

- Recent years saw publication of:
 - RFC7217
 - RFC8064
- Any changes?

Alexa Dataset

Where to get to the most important bits?

Where to get to the most important bits?

SI6 NETWORKS

Conclusions

- Use of randomized increased to around 15%-20% for the worstcase scenario
- These figures didn't change much for mailservers or name servers
- Curiosity: there was not a move from IEEE-based -> randomized

Notes on DNS reverse mappings

LACNIC 29 Panama City. April 30 - May 4, 2018

© 2018 SI6 Networks. All rights reserved

Introduction

- DNS reverse mapping is among the most powerful techniques for IPv6 enumeration
- We learned some lessons...

"Noise"

 Large number of dynamically generated reverse mappings for some networks:

Found: 2001:4998:c:80d::4062 is hz-network-migration-50568-89.gql.yahoo.com. Found: 2001:4998:c:80d::4064 is hz-network-migration-50568-91.gql.yahoo.com. Found: 2001:4998:c:80d::4066 is hz-network-migration-50568-88.gql.yahoo.com. Found: 2001:4998:c:80d::4066 is hz-network-migration-50568-93.gql.yahoo.com. Found: 2001:4998:c:80d::4066 is hz-network-migration-50568-93.gql.yahoo.com. Found: 2001:4998:c:80d::4060 is hz-network-migration-50568-87.gql.yahoo.com. Found: 2001:4998:c:80d::4063 is hz-network-migration-50568-90.gql.yahoo.com. Found: 2001:4998:c:80d::4063 is hz-network-migration-50568-90.gql.yahoo.com. Found: 2001:4998:c:80d::4068 is hz-network-migration-50568-95.gql.yahoo.com. Found: 2001:4998:c:80d::4069 is hz-network-migration-50568-96.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-96.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-98.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-98.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-98.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-99.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-99.gql.yahoo.com. Found: 2001:4998:c:80d::406b is hz-network-migration-50568-99.gql.yahoo.com.

© 2018 SI6 Networks. All rights reserved

Reliability

- Reverse mappings of /48s were more reliable than those of / 32s
- May make sense to split /32s into multiple /48s for reliability purposes

Integrating IPv6 Network Reconnaissance

LACNIC 29 Panama City. April 30 - May 4, 2018

© 2018 SI6 Networks. All rights reserved

Introduction

- Most network reconnaissance is manual
- Out goal was to try to integrate different techniques into the same tool

Messi: IPv6 net reconnaissance tool

- If you have access to a local node, it might be of use:
- What the tool does:
 - 1) Obtain domains from search engines
 - 2) Obtain NS and MX records
 - 3) Obtain IPv6 addresses for all those names
 - 4) Build prefixes out of those addresses
 - 5) Do DNS reverse enumeration
 - 6) Go back to step #1
- Eventually we converge to results

Questions?

LACNIC 29 Panama City. April 30 - May 4, 2018

© 2018 SI6 Networks. All rights reserved

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

LACNIC 29 Panama City. April 30 - May 4, 2018

 $\ensuremath{\mathbb{C}}$ 2018 SI6 Networks. All rights reserved